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S1: Transverse Vlasov-Poisson Model: for a 2D coasting, single species beam Hamiltonian expression of the Vlasov equation:
with electrostatic self-fields propagating in a linear focusing lattice: fL OfL | dxy ] ofi | dx, ) ofL
= — = . ==
X1, X/J_ transverse particle coordinate, angle 88 ds  Oxy ds aXJ—
/
g, ™ charge, mass fi (XJ_7 X1, S) single particle distribution - _afL OH, . _afL _ _8Hl . _afl 0
/ /
Vo, ﬁb axial relativistic factors H, (x 1, X/J_ , 5) single particle Hamiltonian X .5)3 aij Ox1 Ox1 axJ‘
. - Using the equations of motion:
Vlasov Equatlon (see J.J. Barnard, Introductory Lectures): d oH,
!
— —x
fL* 3f¢ +dXL 0fL +dxl 0fy —0 ds ox,
ds Ox, ds 0x| d_, OH N . q ¢
. . . AT Tk, Y e o,
Particle Equations of Motion: - Yo% +
d OH | d OH of L Ly ofL k% 4 Hy g+ —2 99 \ OfL
—x] = x| === =4 x ==~k . -
ds x| ds~+ ox Os Ox v mypBic? 0xy ) 0%/
Hamiltonian (see S.M. Lund, lectures on Transverse Particle Dynamics): . . ..
( 1 ., 1 1 Y ) In formal dynamics, a “Poisson Bracket” notation is often employed:
— / 2 2
Hy = 5%\ "+ 5ha(s)2” + Sry(s)y” + m73ﬁ202¢ dy Ofy  OHL 0f. OHL 0fi
= == = == = =
Poisson Equation: ds s oxy Oxi Oxi Ox)|
92 32 =9yl fy =0
N — _ d2x/ n 85 1yJLy =
< 8562 ¢ €0 s f
+ boundary conditions on ¢ Poisson Bracket
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Comments on Vlasov-Poisson Model

+ Collisionless Vlasov-Poisson model good for intense beams with many particles
- Collisions negligible, see: J.J. Barnard, Introductory Lectures
+ Vlasov-Poisson model can be solved as an initial value problem

1) fi(x1,%,s =s;) = Initial "condition” (function) specified

2) Vlasov-Poisson model solved for subsequent evolution in s
for fi(x1,x/,s) for s > s;

+ The coupling to the self-field via the Poisson equation makes the
Vlasov-Poisson model highly nonlinear

_ de/ f 8_2_|_8_2 :_ﬁ
pP=dq 1 JL or2 ' Oy? €0

+ Vlasov-Poisson system is written without acceleration, but the transforms
developed to identify the normalized emittance in the lectures on
Transverse Particle Dynamics can be exploited to generalize all

result presented to (weakly) accelerating beams (interpret in tilde variables)
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+ System as expressed applies to 2D (unbunched) beam as expressed
- Considerable difficulty in analysis for 3D version for
transverse/longitudinal physics
+ For solenoidal focusing the system can be interpreted in the rotating
Larmor Frame, see: lectures on Transverse Particle Dynamics
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Review: Focusing lattices, continuous and periodic
(simple piecewise constant):

a) Continuous

K| (=1, = K = const) Lattice Period L,
Ko
- Occupancy 7
4 |b) Periodic Solenoid n € [0,1]
(8 (K, =K;) A
Solenoid description
carried out implicitly in
- Larmor frame
) nL, a2 dr2 [see: S.M. Lund, lectures on
e d=(-i, Transverse Particle Dynamics]
4 | © Periodic Quadrupole Doublet
() (=%, ) A )
e Syncopation Factor «
dj b2,
F Quad o 1
D Quad s OS [07 _]
R 2
NL,/2
,{gq - 1
L, dy=o(1-n)L, o = 5 — FODO
Lattice Period dy=(1-0)(l-n Ly
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Example Hamiltonians:
See S.M. Lund Lectures on Transverse Particle Dynamics for more details

: B _ 2
Continuous focusing: K, = Ky = kﬁo = const

1 1
Hy=-x\"+ S Faox] +

ng
2 m’yg’ﬁgcQ

Solenoidal focusing: (in Larmor frame variables) Kz = Ky = K(s)

1 9 1 q
H ==x kx4 ———
LT gXL Ty my; B2 c? ¢
Quadrupole focusing: Kz = —Ky = K(8)
1,2 1 1 q
H, == / - 2 - 2
1 2XL + 2mv 2f<ay 7m725502¢
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Review: Undepressed particle phase advance o, is typically employed to

characterize the applied focusing strength of periodic lattices:
see: S.M. Lund lectures on Transverse Particle Dynamics

x-orbit without space-charge satisfies Hill's equation
2" (s) + kz(s)z(s) =0
( x(s) > _ML(s | 5,) ( z(s;) ) M, = 2 x 2 Transfer

Matrix from

§=s8; to 8
Undepressed phase advance

1
COS 0oy = §Tr M., (s; + Lp|si)

+ Subscript 0x used stresses x-plane value and zero (Q = 0) space-charge effects

Single particle (and centroid) stability requires:

1 °
§|Tr M, (s + Lyplsi)| <1 —» o0z < 180

[Courant and Snyder, Annals of Phys. 3, 1 (1958)]
Analogous equations hold in the y-plane
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The undepressed phase advance can also be equivalently calculated from:

1
1
Woy + KaWoz — —5— =0
wy
x

sitly (g
00z :/ o
S; sz

i

woa (s + Lp) = woz(s)
wWor > 0

+ Subscript Ox stresses x-plane value and zero (Q = 0) space-charge effects
- Need to generalize notation since we will add space-charge effects
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S2: Vlasov Equilibria: Plasma physics-like approach is to resolve
the system into an equilibrium + perturbation and analyze stability

Equilibrium constructed from single-particle constants of motion C,

fi=f({C}) =20 =

Equilibrium

01, dC 0
— f 1({Ci}) Z =0
Comments: ds §
+ Equilibrium is an exact solution to Vlasov s equation that does not change in
4D phase-space functional form as s advances
- Equilibrium distribution periodic in lattice period in periodic lattice
- Projections of the distribution can evolve in s in non-continuous lattices
- Equilibrium is “time independent” (9/ds = 0 ) in continuous focusing
+ Requirement of non-negative f1L({Ci}) follows from single particle species
+ Particle constants of the motion {C'} are in the presence of (possibly s-
varying) applied and space-charge forces
- Highly non-trivial!
- Only one exact solution known for s-varying focusing using Courant-

Snyder invariants: the KV distribution to be analyzed in this lecture
Sm Luna, UdFAD, June Zul 1l lransSverse rquiiorium pisirioutons 12

/l/ Example: Continuous focusing f1 = f1 (H))

1 q
H, = + k’ + ———550 no explicit s dependence
2 J_ ﬁO J_ 726{362 p P
df i, 0fL  0H, 0fy _ OH | ) of1 see problem

sets for detailed
argument

ds ds | ox| Oxi. oOxy x|

0

ofs alf L OfL (0H, am/[aHL OHLY _,
" OH, Ps T oH, ox/, ox,/ oxi ox| )

Showing that f, = fi (H) exactly satisfies Vlasov's equation for continuous
focusing

* Also, for physical solutions must require: f1 (H1)>0
- To be appropriate for single species with positive density
+ Huge variety of equilibrium function choices f1 (H 1)
can be made to generate many radically different equilibria
- Infinite variety in function space
+ Does NOT apply to systems with s-varying focusing K, — k,%o

- Can provide a rough guide if we can approximate: /)
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Typical single particle constants of motion:
Transverse Hamiltonian for continuous focusing:

1
2™t

1
H, = 4 51{%@(3_ + ¢ = const

q
myy B c?

k%o = const

+ Not valid for periodic focusing systems!
Angular momentum for systems invariant under azimuthal rotation:

Py = xy' — ya’ = const

+ Subtle point: This form is really a Canonical Angular Momentum and
applies to solenoidal magnetic focusing when the variables are expressed
in the rotating Larmor frame (i.e., in the “tilde” variables)

- see: S.M. Lund, lectures on Transverse Particle Dynamics

Axial kinetic energy for systems with no acceleration:

| £ = (7w — 1)mc?® = const |

+ Trivial for a coasting beam with -, = const
More on other classes of constraints later ...
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Plasma physics approach to beam physics:
Resolve:

= fL({Cl}) +6fJ_(XJ_7x/J_73)
< fr>16f1]

and carry out equilibrium + stability analysis
Comments:
+ Attraction is to parallel the impressive successes of plasma physics
- Gain insight into preferred state of nature
+ Beams are born off a source and may not be close to an equilibrium condition
- Appropriate single particle constants of the motion unknown for
periodic focusing lattices other than the (unphysically idealistic) KV distribution
+ Intense beam self-fields and finite radial extent vastly complicate equilibrium
description and analysis of perturbations
- Unknown if smooth Vlasov equilibria exist (exact sense) in periodic focusing
though recent perturbation theory/simulations suggest self-similar classes of
distributions have near equilibrium form
- Higher model detail vastly complicates picture!
+ If system can be tuned to more closely resemble a relaxed, equilibrium, one

might expect less deleterious effects based on plasma physics analogies
SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 18

f(XJ_7X/J_a 5)

equilibrium perturbation

S3: The KV Equilibrium Distribution

[Kapchinskij and Vladimirskij, Proc. Int. Conf. On High Energy Accel., p. 274 (1959);
and Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009)]

Assume a uniform den§ity elliptical beam in a periodic focusing lattice
y

. Line-Charge:
Elliptical
heam ro A= aus)ra(s)ry(s)
= const  (charge conservation)
number .
density n * Bean; Edge' 5
.Z' Y = 1lipse)
- EEREEIOI
Free-space self-field solution w1th1n the beam (see: Appendix A) is:
by 1‘2 ,yQ
= — + const
¢ 2meg (1o +1y)re (re +1y)1y
8¢ A x
C 9z meo (re +1y)r valid only within the beam!
09 A Y + Nonlinear outside beam
Cdy  Teo (ry +1ry)ry
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The particle equations of motion:

" _ a9 a¢
T+ Ky = m%,ﬁbCQ e
" qg 09

y" + Ry =
Y m’ybﬁbc2 8y

become within the beam:

2Q) B
VA$+wAQVA@}x“)‘O

}y(S)—O

" (s) + {Kz(s) -

2Q)
[ra(s) + 1y (s)]ry(s)
Here, Q is the dimensionless perveance defined by:
N
2meomi B¢

+ Same measure of space-charge intensity used by J.J. Barnard in Intro. Lectures
+ Properties/interpretations of the perveance will be extensively developed in
in this and subsequent lectures

- Will appear in same form in many different space-charge problems
SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 20
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If we regard the envelope radii 7z, Ty as specified functions of s, then these
equations of motion are Hill's equations familiar from elementary accelerator
physics:

rz(8) + ry(s)ra(s)
2Q
+ 7y (8)]ry ()

/{y (S) - ij(S) - [7’3;(8)

Suggests Procedure:
+ Calculate Courant-Snyder invariants under assumptions made
+ Construct a distribution function of Courant-Snyder invariants that generates
the uniform density elliptical beam projection assumed
- Nontrivial step: guess and show that it works: KV construction
Resulting distribution will be an equilibrium that does not evolve in functional
form, but phase-space projections will evolve in s when focusing functions vary
ins
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Review (1): The Courant-Snyder invariant of Hill's equation
[Courant and Snyder, Annl. Phys. 3, 1 (1958)]

Hill's equation describes a zero space-charge particle orbit in linear applied
focusing fields:

2"(s) + k(s)z(s) =0

As a consequence of Floquet's theorem, the solution can be cast in
phase-amplitude form:

x(s) = A;w(s) coshp(s)

where w(s) is the periodic amplitude function satisfying

w”(s) + k(s)w(s) — =0

w(s + L) = w(s)

1(s) is a phase function given by
5 ds
v —vit [ s
s W(3)
A; and v¥; are constants set by initial conditions at s = s;
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Review (2): The Courant-Snyder invariant of Hill's equation
From this formulation, it follows that
x(s) = Ajw(s) cos1(s) 1

Q/)I(S) = w2(s
2'(s) = Ajw'(s) cosp(s) — w/(l;) sin(s) (=)

or

< = A;cosv

g |

wr' —w'r = A;siny

square and add equations to obtain the Courant-Snyder invariant

2
(E) + (wa’ —w'z)* = A? = const
w

+ Simplifies interpretation of dynamics
+ Extensively used in accelerator physics
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Phase-amplitude description of particles evolving within a uniform density beam:

Phase-amplitude form of x-orbit equations:
z(s) = Aziwz(s) cosPa(s) Agi = const

2'(s) = Agiwl,(s) cos by (s) — wAm' sin o (s) Yo = V(s = 54)

=(5) = const

initial conditions yield:
(s =s;)

where

wy () + i (8)wa (s) —

We (s + Lp) = wy(s) wg(s) >0
Ve (8) = Vi +/‘ w;i—fs,,)

identifies the Courant-Snyder invariant

Wy

2
T
(—) + (wpx’ —wlx)? = A%, = const

Analogous equations hold for the y-plane
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The KV envelope equations:

Define maximum Courant-Snyder invariants: costhy =1
Ex = Max(Aii) T = Agiwg COS ﬂ}z ? Ty = A:L’,rnaxwm
= 2 y
6y — MaX(Ayi) Elliptical

Beam

Values must correspond to the beam-edge radii:

T2(8) = \/awm(s) *
ry(s) = \/Eywy(s) P

The equations for w and w_can then be rescaled to obtain the familiar

KV envelope equations for the matched beam envelope

"(8) + kp(8)ru(s) — 2Q - £ =
R = e
, 20 s
rh6) + o) = s - s =0
ry(s+ Lp) = rz(s) rz(s) >0
Ty(s+ Lp) = 1y(s) ry(s) >0
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Use variable rescalings to denote x- and y-plane Courant-Snyder invariants as:

2
x
(—> + (we’ — whx)? = A%, = const

)2 rex’ —rla\?
(—> + (u) = (C, = const
Ta o

y 2 roy —1ly 2
(—) + (y—y) = C, = const
Ty €y

Kapchinskij and Vladimirskij constructed a delta-function distribution of a linear
combination of these Courant-Snyder invariants that generates the correct
uniform density elliptical beam needed for consistency with the assumptions:

A
fr=———0[Cc+Cy—1]

2
qmiezey

+ Delta function means the sum of the x- and y-invariants is a constant

+ Other forms cannot generate the needed uniform density elliptical
beam projection (see: S9)

+ Density inversion theorem covered later can be used to derive result
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The KV equilibrium is constructed from the Courant-Snyder invariants:

KV equilibrium distribution write out full arguments in x, X' :

A\ 2 o\ 2
qmiee o <r£) + <mx5 rxx) *
zCy T T
2 2
YN (e
Ty &y

d(x) = Dirac delta function

fJ-(XJ-’X/J_vS) =

This distribution generates (see: proof in Appendix B) the correct uniform density
elliptical beam:

A qu\mm,’ 2?/ri 4yl <1
AR (=Y~ NRy~ B
; sty ry >

Obtaining this form consistent with the assumptions, thereby
demonstrating full self-consistency of the KV equilibrium distribution.
- Full 4-D form of the distribution does not evolve in s
- Projections of the distribution can (and generally do!) evolve in s

SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 27

/// Comment on notation of integrals:
- 2™ forms useful for systems with azimuthal spatial or annular symmetry

Spatial
o0 o0
— o0 — 00
o0 ™
— / dr r / do --- Cylindrical Coordinates:
0 — x =rcosf
Angular y =rsind
o oo
/inUl"'E/ d:r’/ dy -
—o0 —00
Angular

Cylindrical Coordinates:
2’ =1’ cost

:/ dm:f/ di -
0 —

Transverse Equilibrium Distributions 28

y =1'sin¢’
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Use care when interpreting dimensions of symbols in cylindrical form of angular

integrals:

Pl L ETE Pl-Age  Fefnoo)
s s
0 + 19 = iA]cham[y,:E] [[0']] = rad 0" € [-m,7]
ds ds
z' =1’ cos§’ [[2']] = Angle a' € (—00, 00)
y =1'sind’ [[y']] = Angle y' € (—00,00)

+» Tilde is used in angular cylindrical variables to stress that cylindrical variables
are chosen in form to span the correct ranges in x' and y' but are not d/ds of the
usual cylindrical polar coordinates!
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Comment on notation of integrals (continued):
Axisymmetry simplifications

Spatial: for some function f (xf_) =f (7'2)
o0
/d2xl f(x2) 27r/ drrf(r?)
%
T / dr® f(r?)
o
T / dw f(w)
0
Angular: for some function g(x'7) = g(f’Q)
/dgmj_ g(x?) = 277/ dr’ f’g(f’Q)
0

Tr/ dr* g(r*)
0

ﬂ/()ocdu g(u)

SM Lund, USPAS, June 2011

Cylindrical Coordinates:
x =rcosf

y =rsinf

Angular
Cylindrical Coordinates:

2’ =1'cost
y =r'sin@
~2
u=r!
1
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Moments of the KV distribution can be calculated directly from the distribution
to further aid interpretation: [see: Appendix B for methods to simply calculate]

[d?zy [dPx! - fL
fdQ.TJJ_ fdQ.T/l fJ_
fd%l e fy
fde/J_ fJ_
Envelope edge radius: Envelope edge angle:
re = 2(a”),” vl = 2(e')1 /(@)

rms edge emittance (maximum Courant-Snyder invariant):

(), =

Full 4D average:

Restricted angle average: (o )x,

er = 4[(@?) L (&) | — (@a)2]/? = const

Coherent flows (within the beam, zero otherwise):
/ oz
<$ >XL - Tazr_
xT
Angular spread (x-temperature, within the beam, zero otherwise):
) 2 22 g2
nzmu@%»xmriﬁ———_)
2 2 2
+ L 2r: ry Ty
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Summary of 1* and 2™ order moments of the KV distribution:

Moment Value
frl'zz:_ i r’rin
[ y'fy T;%n
f(lzwﬁ_ 2 f) [7112%+%(1,%,%):| n
Jesn [ (- -g)]n
[d%' xalfy %1211
S & yy' L %yzn
Jd*' (zy —ya") [ 0
(as 3
i 3
@), Lt
() Yk
o e
7gn e
oy’ —ya'l 0
16[(z%)1 ")) — (za’)?] g2
16[(y* ) {y)e — (yy)3] <

SM Lund, USPAS, June 2011

All 1* and 2™ order
moments not listed
vanish, i.e.,

/an:’J_ zyfi =0
(zy)L =0

see reviews by:

(limit of results presented)
Lund and Bukh, PRSTAB 7,
024801 (2004), Appendix A

S.M. Lund, T. Kikuchi, and

R.C. Davidson, PRSTAB 12,
114801 (2009)
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Canonical transformation illustrates KV distribution structure:
[Davidson, Physics of Nonneutral Plasmas, Addison-Wesley (1990), and Appendix B]

Phase-space transformation:
do dy = 22Y_gx dy

X \/ax /EzEy

.
VI do' dy = Y2V 4X dy”

X = e Ta TxTy
Vee dz dy dz’ dy = dX dY dX' dY’

Courant-Snyder invariants in the presence of beam space-charge are then simply:

X? 4+ X'"? = const
and the KV distribution takes the simple, symmetrical form:
X2 X/2 Y2 Y/2
A { LESSE G 2 S 1]
€z Ey

fl(x’yvxlvylvs) = fl(Xv Y7 XI7YI) =

2
qmiezey

from which the density and other projections can be (see: Appendix B) calculated

more easily: o0 2 2
Y n:/d%c;fl A / dU26{U27<17x—7y—)}
0

qmrLTy r2 72
A 2,2 4 ,2/.2
S T /5 +y /ry <1
0, x2/r£+y2/7“§>1
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KV Envelope equation

The envelope equation reflects low-order force balances

: 1 L2Q g2 Matched Solution:
I H | T
., + Kgry — —— — — =0
¢ | m Tz Ty Ty rz(s+ Lp) = ra(s)
" 29 e ry(s+ Lp) = 1y(s)
Ty + o Kyry — ——— — —5 =0
1 | Tzt Ty Ty
SV ‘ K (s + Lp) = Ka(s)
Applied Space-Charge Thermal L) —
Focusing  Defocusing Defocusing fy(s + Lyp) = riy(s)
Terms: Lattice Perveance  Emittance

Comments:
+ Envelope equation is a projection of the 4D invariant distribution
- Envelope evolution equivalently given by moments of the
4D equilibrium distribution
+ Most important basic design equation for transport lattices with high space-charge
intensity
- Simplest consistent model incorporating applied focusing,
space-charge defocusing, and thermal defocusing forces
- Starting point of almost all practical machine design!
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Comments Continued:
+ Beam envelope matching where the beam envelope has the periodicity of the lattice

rz(s+ Lp) = rz(s)
ry(s+ Lp) =1y (s)
will be covered in much more detail in S.M. Lund lectures on Centroid and Envelope
Description of Beams. Envelope matching requires specific choices of initial conditions
72(81), Ty(si) ACHREAED)
for periodic evolution.
+ Instabilities of envelope equations are well understood and real (to be covered: see S.M.
Lund lectures on Centroid and Envelope Description of Beams)
- Must be avoided for reliable machine operation
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The matched solution to the KV envelope equations reflects the symmetry of the
focusing lattice and must in general be calculated numerically

Example Parameters

L,=05m, o9=280° n=0.5

€z = £y = 50 mm-mrad
o/oo=0.2

Matching Condition

rz(s+ Lp) = 14(s)
Ty(s 4+ Lp) = 1y(5)

FODO Quadrupole Focusing
(Q = 6.5614 x 107)

Solenoidal Focusing
(Q = 6.6986 x 10~ %)

Edge Radii 7> and r, (mm)
Edge Radii r. and r, (mm)
w

o 0.z 0.4 u.s 0.8 L

Axial Coardinate s /Ly

The matched beam is the most radially compact solution to the envelope
equations rendering it highly important for beam transport
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2D phase-space projections of a matched KV equilibrium beam
in a periodic FODO quadrupole transport lattice

Matched Beam Envelope and Focusing Function

T
E 12
= 10
& s -
2 44l—|—‘ —
. . H oo 02 i 04 i 06 i 08 L
Pr ojection ! ! Axial Coordinate (Lattice Periods) ! !
¥ ¥ ¥ b ¥
Xy
area: T, Ty 7 const * * X x *
X o x1 x ' %]
-r gt El‘ guﬂ S.E
X-X'
area: e, = const x x x x x
(CS Invariant) | }
e, e, 1o, 4 e,
1
yy
area: e, = const Y Y ¥ ¥ Y
(CS Invariant)
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KV model shows that particle orbits in the presence of space-charge can
be strongly modified — space charge slows the orbit response:
Matched envelope:

1 2Q 5%
73 (8) + Kz (8)ra(s) — T2 (8) + 14(5) - 3(s) =0
x Yy xT
2Q 2
7y (8) + hy(8)ry(s) — e ) rg(ys) =0
rz(s+ Lp) = 1ry(s) r2(s) >0
ry(s+ Lp) =1y(s) ry(s) >0
Equation of motion for x-plane “depressed” orbit in the presence of space-charge:
2Q)
1/
— =0
A PO RO RO

All particles have the same value of depressed phase advance (similar Eqns in y):

sitle g
Oy = wm(sz + Lp) - wx(5i> = 590/

2
r3(s)
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Contrast: Review, the undepressed particle phase advance calculated in
the lectures on Transverse Particle Dynamics

The undepressed phase advance is defined as the phase advance of a particle in
the absence of space-charge (Q = 0):
+Denote by 0g; to distinguished from the “depressed” phase advance o,
in the presence of space-charge

1
Woy + KaWoz — —5— =0
wy
x

sit+Lp ds
00z = / 2
Sq Wog

k3

woz (s + Lp) = woz(s)

woz > 0

This can be equivalently calculated from the matched envelope with Q = 0:

2
£ —
oy + KaToe — 5 =0 Tz (s + Lp) = T0x(s)
70z
oz > 0
sitle (g
00z = gz/ 5
En "0z

+ Value of €, is arbitrary (answer for 0o, is independent)
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Depressed particle x-plane orbits within a matched KV beam in a periodic
FODO quadrupole channel for the matched beams previously shown

Solenoidal Focusing (Larmor frame orbit):

Undepressed (Red) and Depressed (Black) Particle Orbits

0.02

0.01¢ x-plane orbit:
0o N7 L\ SN /
001 y=0=y

—oo LI i Ly

00 25 5 75 10 125 15 175 20

FODO Quadrupole Focusing:Lattice Periods

Undepressed (Red) and Depressed (Black) Particle Orbits
0.02

0.01

x-plane orbit:
0 0=
-0.01 } y=v=Y

R
00 25 5 7.5 10 125 15 175 20
Lattice Periods

meters

meters
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Depressed particle phase advance provides a convenient
measure of space-charge strength

For simplicity take (plane symmetry in average focusing and emittance)
0oz = 0oy = 00 Ex =&y =€

Depressed phase advance of particles moving within a matched beam envelope:

87;—|-L], dS S’i,+Lp dS
g =& =&
/si r2(s) /s ry(s)

Limits: I;
leO 0 =09 Envelope just rescaled amplitude: ri = 5w[2)z
2) limo =0 Matched envelope.ems.ts with ¢ =0 .
e—0 Then ¢ = 0 multiplying phase advance integral
Normalized space charge strength Cold Beam
0/ Og — 0 (space-charge dominated)
e—=0
0<o/op<1
1 Warm Beam
U/UO - (kinetic dominated)
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For example matched envelope presented earlier: repeat periods

Undepressed phase advance: ¢, = 80°
Depressed  phase advance: o =16° — o/gp = 0.2 225
Periods i
Solenoidal Focusing (Larmor frame orbit): £83:ng;

phase advance

Undepressed (Red) and Depressed (Black) Particle Orbits

0.02
g 00L¢ x-plane
g . W orbit
-0.01} y=0=y'
_0_02J'L|_|_FIJ'I_I_LI_U'U_U'I_I_LI_U'LI_U_U'I;I:LI_U'U'LI'L
0.0 25 5 175 10 125 15 175 20
- Lattice Periods
4.5 periods|
22.5 periods
Comment:

All particles in the distribution will, of course, always move in response to both applied
and self-fields. You cannot turn off space-charge for an undepressed orbit. Itis a
convenient conceptual construction to help understand focusing properties.
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The rms equivalent beam model helps interpret general beam evolution in
terms of an “equivalent” local KV distribution
Real beams distributions in the lab will not be KV form. But the KV model can
be applied to interpret arbitrary distributions via the concept of rms equivalence.
For the same focusing lattice, replace any beam charge p(x,y) density by a
uniform density KV beam of the same species (¢, 7 ) and energy (3, ) in each
axial slice (s) using averages calculated from the actual “real” beam distribution
with: o fdQLUJ_fde,l e f1
(o= [d?z, [d?2!, fio

rms equivalent beam (identical 1st and 2nd order moments):

f1 = real distribution

Quantity KV Equiv. Calculated from Distribution
Perveance @) =q° [d?z [d*2| f1 [[2meey)BEc?]
z-Env Rad 7y = 2(z?) 1/2

y-Env Rad 1, =2y )1/2

2-Env Angle 7/, =2za’), [(z?))/?

y-Env Angle 7 =2(yy) 1/ (y*) )

z-Emittance g, =4[(2?) L (2?) ] — (x2’) ) ]V/?
y-Emittance g =4[y L () L — (yy') 1 ]?
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Comments on rms equivalent beam concept:

+ The emittances will generally evolve in s
- Means that the equivalence must be recalculated in every slice as the
emittances evolve
- For reasons to be analyzed later (see S.M. Lund lectures on
Kinetic Stability of Beams), this evolution is often small
+ Concept is highly useful
- KV equilibrium properties well understood and are approximately correct
to model lowest order “real” beam properties
- See, Reiser, Theory and Design of Charged Particle Beams (1994, 2008)
for a detailed and instructive discussion of rms equivalence
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Sacherer expanded the concept of rms equivalency by showing that the
equivalency works exactly for beams with elliptic symmetry space-charge
[Sacherer, IEEE Trans. Nucl. Sci. 18, 1101 (1971), J.J. Barnard, Intro. Lectures]

For any beam with elliptic symmetry charge density in each transverse slice:
) y2 Basgd on:
Pt e P
z v ozt dmeg Ty + 1y
see J.J. Barnard intro. lectures

the KV envelope equations

B o 2Q  e(s)
ra(8) +ra(s)rale) = TS T (e O
y 2Q enls) _

Ty (8) + Ky(s)ry(s) — T2 (5) + 7y (5) - 7"2(8) -

remain valid when (averages taken with the full distribution):

A
a /\:q/dQ:rJ_p:const

Q = —————-— = const
er = 4[(z?) L (@)L — (za’)}]"/?

- 2meomiyp BEc?
ey =4[W7) L)L — )72

n1/2
re = 2(x >L/
_ 2\1/2
ry = 2(y°) i
The emittances may evolve in s under this model
(see SM Lund lectures on Transverse Kinetic Stability)
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Interpretation of the dimensionless perveance Q

The dimensionless perveance:

g\ A = ghmrgry = line-charge = const
= const

- 2meomny; BEc? 7 = beam density

+ Scales with size of beam (A ), but typically has small characteristic values
even for beams with high space charge intensity ( ~ 10 *to 10®* common)

+ Even small values of Q can matter depending on the relative strength of other
effects from applied focusing forces, thermal defocusing, etc.

Can be expressed equivalently in several ways:
q A q I b 2 I b

Q= 2reompBEc  2meomApBicd ()3 Ia

Iy, = A\Byc = beam current
~ ~2
q27r7“$ryn WpTzTy

29

14 = dmegme® /q = Alfven current

Wp = V¢*1/(meg) = plasma freq.

+ Forms based on A, It generalize to nonuniform density beams
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2reomy; 333

To better understand the perveance Q, consider a round, uniform density beam with
Ty =Ty =Tp
then the solution for the potential within the beam reduces:

by xQ y2
¢ =— + + const
2meg | (1o +1y)re (rz+1y)ry
A + t
= ———— +cons
47eg rg
A for potential drop

= Ap=¢(r=0)—¢(r=mr) = 4mey  across the beam

If the beam is also nonrelativistic, then the axial kinetic energy Ep is
1
E = (1 — 1)mc* ~ §m6,302
and the perveance can be alternatively expressed as

_ qA AN
2reomy BEc? T &

+ Perveance can be interpreted as space-charge potential energy difference

across beam relative to the axial kinetic energy
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Further comments on the KV equilibrium: Distribution Structure

KV equilibrium distribution:

f1 ~ d[Courant-Snyder invariants]

Forms a highly singular hyper-shell in 4D phase-space

/
fae X
Schematic: L - 4D singular hyper-shell surface

X1

+ Singular distribution has large “Free-Energy” to drive many instabilities
- Low order envelope modes are physical and highly important
(see: lectures by S.M. Lund on Centroid and Envelope Descriptions of Beams)
+ Perturbative analysis shows strong collective instabilities
- Hofmann, Laslett, Smith, and Haber, Part. Accel. 13, 145 (1983)
- Higher order instabilities (collective modes) have unphysical aspects
due to (delta-function) structure of distribution and must be applied
with care (see: lectures by S.M. Lund on Kinetic Stability of Beams)
- Instabilities can cause problems if the KV distribution is employed
as an initial beam state in self-consistent simulations
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Preview: lectures on Centroid and Envelope Descriptions of Beams:
Instability bands of the KV envelope equation are well understood in
periodic focusing channels and must be avoided in machine operation

Envelope Mode Instability Growth Rates
Solenoid (1 =0.25) Quadrupole FODO (1 =0.70)

1.0

T I
! ! ln|y B, Q‘ 1.0
0.8 | 0.8 1 E
V8o 0.0
OQ 0.6 bc 0.6 Band
~ ¥ ~
O 04 * © o4
Lattice
02 Res. | 0.2
Band !
0.0 1 0.0

100 120 140- lﬁd 180 100 120 140 160 180
G (deg/period) O (deg/period)
[S.M. Lund and B. Bukh, PRSTAB 7 024801 (2004)]
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Further comments on the KV equilibrium: 2D Projections

All 2D projections of the KV distribution are uniformly filled ellipses

+ Not very different from what is often observed in experimental measurements and
self-consistent simulations of stable beams with strong space-charge
+ Falloff of distribution at “edges” can be rapid, but smooth, for strong space-charge

fda s dy' 1 jdysdy f1
4

Area we,

fdxfdy f1
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Further comments on the KV equilibrium:
Angular Spreads: Coherent and Incoherent
Angular spreads within the beam:

Coherent (flow):

Incoherent (temperature):

A2z, x 2 22y
(@), = f;i“cl =rp— (@ —rha/r) ) = 55 (1 = y—)
fd xJ_ fJ_ Tz 2/,':5 Tz Ty
(@) &
| r2
A : v
i Ty T
‘ y=0
- —rh

< ny

+ Coherent flow required for periodic focusing to conserve charge

+ Temperature must be zero at the beam edge since the distribution edge is sharp

+ Parabolic temperature profile is consistent with linear grad P pressure forces in a fluid
model interpretation of the (kinetic) KV distribution
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Further comments on the KV equilibrium:

The KV distribution is the only exact equilibrium distribution formed from
Courant-Snyder invariants of linear forces valid for periodic focusing channels:
+Low order properties of the distribution are physically appealing
+[llustrates relevant Courant-Snyder invariants in simple form
- Later arguments demonstrate that these invariants should be a reasonable
approximation for beams with strong space charge
+KYV distribution does not have a 3D generalization [see F. Sacherer, Ph.d. thesis, 1968]
Strong Vlasov instabilities associated with the KV model render the distribution
inappropriate for use in evaluating machines at high levels of detail:
+Instabilities are not all physical and render interpretation of results difficult
- Difficult to separate physical from nonphysical effects in simulations

Possible Research Problem (unsolved in 40+ years!):
Can an exact Vlasov equilibrium be constructed for a smooth (non-singular),
nonuniform density distribution in a linear, periodic focusing channel?
+Not clear what invariants can be used or if any can exist
- Nonexistence proof would also be significant
+Recent perturbation theory and simulation work suggest prospects
- Self-similar classes of distributions
+Lack of a smooth equilibrium does not imply that real machines cannot work!
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Because of a lack of theory for a smooth, self-consistent distribution that would
be more physically appealing than the KV distribution we will examine smooth
distributions in the idealized continuous focusing limit (after an analysis of the
continuous limit of the KV theory):

+ Allows more classic “plasma physics” like analysis
+[lluminates physics of intense space charge
+Lack of continuous focusing in the laboratory will prevent over generalization
of results obtained
A 1D analog to the KV distribution called the “Neuffer Distribution” is useful in
longitudinal physics
+Based on linear forces with a “g-factor” model

+Distribution not singular in 1D and is fully stable in continuous focusing
+See: J.J. Barnard, lectures on Longitudinal Physics
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Appendix A: Self-Fields of a Uniform Density Elliptical Beam
in Free-Space
1) Direct Proof:

The solution to the 2D Poisson equation:

- 2
(62 . a2>¢ iy <
dz2 ~ 9y2) " o, i+ >1
¢ A
m — v
r—oo Or  2megr

has been formally constructed as:
* Solutions date from early Newtonian gravitational field solutions of stars with ellipsoidal density
+ See Landau and Lifshitz, Classical Theory of Fields for a simple presentation

A ¢ ds o0 ds x? y?
T : . : T2+8+r2+s
0 |Jo (r2 +s)(r7 +s) 3 (r2 +s)(rz +s) \"z y

+ const

£€=0 when z°/r} +y*/r) <1
2 2 2
T Y T Y
+ — =1, when — + % >1
r24+E 0 r24¢ 2l Al

Y
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£ root of:

We will A) demonstrate that this solution works and then B) simplify the result.
A) Verify by direct substitution:

s (7%)
dx 4‘”60 r2+s(r2+s) s

_ ! [1_ 2 }ﬁ
(r2 +5)(r2 +5) r2+¢ T§+’£ Ox

But: ) )
fE=0 = 1l=5—+ )
rz g rgtE In either case the 2™ term
if €=0 = Z_f -0 above vanishes
i

Giving:

27reo/ \/r2+s 7nszs)(r +s>
5wl (7%)
dy — 2me (r2+5)(r2 +s) T+

Differentiate again and apply the chain rule:

A2
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Transverse Equilibrium Distributions 54
0? 0?
- + —_— =
(3132 31/2)

1 1 )
+ —
{/ (rl-',-s (r2 +5) <r§+s 24

B 1 [z@f/ax N y@{/ay}
(r2 +s)(r2 + ) ERE R
Must show that the right hand side reduces to the required elliptical form for a
uniform density beam for:

=1

Case 1: Exterior

3 e re
Case 2: Interior &E=1

2 2
Case 1: Exterior :c_2 + y—2 >1
s Ty
2 2
T
Differentiate: 5 + 2y =1

¢ 2z 1

- %:<rz+f>[

+ analogous eqn in y
e + o >2} A3

SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 56




Using these results:

Applying both of these results, we obtain:

x0§/0x  yo§/0y 5 x? n y? 1 _o
r2+€ o rp+E T2 +€? (rp+9)? [ 2 }’ A ) 2 2
(12467 T (r2+6)2 922 + 8_1/2 o= " me \/(7"2 YERTS - \/(7"2 YRS
Also, need to calculate integrals like: w? =712 + g T Y T y
o d é 1 o * duw =0 Thereby verifying the exterior case !
L) = / = - / S — 2
¢ e [(r2+E2+1V2r2 +¢ Jrage (12 —r2 4 w?)3/2 Case 2: Interior  — + y_2 <1
. . T2 Ty
+ analogous integrals in y
This integral can be done using tables or symbolic programs like Mathematica: £=0 x9¢/0x  yog/dy -0
w—00 2 2
I 2w 2 2\/ry +¢€ AR
=(8) = (r2 — 12) fr2 _ 72+ w? 2o + (r2 —12)\/rZ+ € The integrals defined and calculated above give in this case:
w=4/T2+E 2 2
Applying thiZ integral and the analogous (&) I(§=0) = (e + 74)72 I(§=0) = (re +19)7
e 1 1 . .
/ i { 5 + = } =106+ 1,6 Applying both of these results, we obtain:
0 (r2 4 s)(r2 + 5) TpEs Tyt .
0? n 0? 6= A 2 ol = A _qn
2 /r2+ & \JTE+E 2 oxr2 = Oy? T 27eg TaTy o €OMT Ty T e
il \/7«; ve VrEtel o \/(7’92: +E)(r2 + A4 Thereby verifying the interior case ! A5
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Verify that the correct large-r limit of the potential is obtained outside the beam: Finally, it is useful to apply the steps in the verification to derive a simplified
9 Y 1 1 formula for the potential within the beam where:
e Y § ; -
oz 27r€0:v =() rll»nolo L(§) = £ r2 x_z y_2 1 =0
26 \ r large = £ large : 1 r2 +r2 <l &=
—o = 5—y1y(§) lim I,(¢) = = = — e
Oy 2mep” Y e u(©) £ r2 This gives:
Thus: by
m 28 __ A =T 6=—1 {2°I,(£ = 0) + y°I,(€ = 0)} + const
r—oo  Ox 27eq 2 . 0¢ A 0
8¢ A = lim —— = A 212 2y2
lim ~2%2 — _ Y roo  Or  2meor = - + const
r—00 y 2meg 72 dmeg rz(rz + Ty) Ty (rz + Ty)
Thereby verifying the exterior limit!
by 22 y2
. . . - . ¢ =— + + const
Together, these results fully verify that the integral solution satisfies the Poisson 2meq \ro(rs +1y)  ry(re +1y)
equation describing a uniform density elliptical beam in free space
+ This formula agrees with the simple case of an axisymmetric beam with
Ty =Ty =Tp
- Discussed further in a simple homework problem
A6 A7
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2) Indirect Proof:
» More efficient method
» Steps useful for other constructions including moment calculations
- See: J.J. Barnard, Introductory Lectures

Density has elliptical symmetry:
2 2
nx,y)=n|—5+ =

The solution to the 2D Poisson equation:

02 02 qn
(3t a) =4

in free-space is then given by
qraTy n(x)
o= -T2 [Ta N n
o Joo T \SrZaE 2t r2+& 0 r24¢

where 7() is a function defined such that

function n(argument) arbitrary

1l

dn(x
n(a,y) = 20
X le=0
+ Can show that a choice of 7} realizable for any elliptical symmetry n A8
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Prove that the solution is valid by direct substitution

ox = 2 0%y 2
_ y? 9z 12+ 022 r21¢
YTEreteie T o oy 2
gy ry+¢ oy2  r2+€

Substitute in Poisson's equation, use the chain rule, and apply results above:

0? 0?
(3 32 -

an an) (2 2
_anry /Oodg (&) (5 + o) + (8) (F=+ 7)
0

Ao e e
Note: 2 ®
dx = — + d
-t e«
Using this result the first integral becomes:
dn 4z 4y> dn? d
/ Tae (&) (Her + witer) _ 4 / e PR
0 Vr3+£\/7"5+£ 0 \/7"2 1/7‘2 A9
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Apply partial integration:

dn? d d (dn
0 T2+ &y + ¢ 0 i+ ry+E

dx ( 2+€ + 2+€)

=N e et

in first term, upper limit vanishes since denominator ~ £ — oo

r2+§ + r2+§)

_ 4 dn _ / de Term cancels
TaTy dX |e_g /r2 /r2 2" integral
Giving:
0? 0? rery 4 dn(x q
S5 ta3]9=— rary 4 dlx) = ——n(z,y)
ox 0 deg Tory  dx £=0 €0
dn(x)/dxle=o = n(z,y) A10

Which verifies the ansatz.
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For a uniform density ellipse, we take:

A fx ifx<l dn(x ey X <1
rr](X) — . N L — qrTzTy )
grrery |1, ifx>1 dx 0, if x >1
Then
dn(x) _ qﬂ% if xlezo < 1 _ qﬁjﬂy, if 2% /r2 442 /12 < 1
dx le—o |0, if x|e—o > 1 0, if 22 /r2 +y?/r2 > 1
Therefore, for this choice of
d
#‘ =n(x,y) for a uniform density elliptical beam
X le=o with radii r5, 7, and density \/(gmryry)
Apply these results to calculate
qrzry /
X = - + v = 1f——|—y—<1 then
r2+& i +¢ rz 72
X<1 for all OS£<OO All
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Then:
rery [ A x? 2

o=t ), % [T e
Using Mathematica or integral tables

/Oodf 1 _ 2

o T AP0 )

/Oodg 1 _ 2

o © TP )

Showing that:

)\ $2 2
¢=- { +—2
2meg |12 (rs +1y)  Ty(re +1y)

+ const

since an overall constant can always be added to the potential (the integral had a
reference choice ¢p(xz = y = 0) = 0 built in.

Al2
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The steps introduced in this proof can also be simply extended to show that
* For steps, see J.J. Barnard, Introductory Lectures

(a:%> _ A Ty
ox’'t T Tdmeors +ry Ty = <x2>1/2
A= q/d%L n v L
<y%> S ry = ()
Oy L Ameg 1y + Ty v +

for any elliptic symmetry density profile

2 2
z
n(z,y) = func (—2 + y—2>
Ty T,
In the introductory lectures, these results were applied to show that the KV
envelope equations with evolving emittances can be applied to elliptic symmetry

beams.
+ Result first shown by Sacherer, IEEE Trans. Nuc. Sci. 18, 1105 (1971)

Al3
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Appendix B: Canonical Transformation of the KV Distribution

The single-particle equations of motion:

" o 2Q 2(s) —
v (s”{““”@ [m<s>+ry<s>m<s>} (s)=0

(s Ky(s) — 2Q s) =
6+ o)~ o f =0

can be derived from the Hamiltonian:

by Lo 2Q z?
HJ_(‘T,Z/,‘T Y 7’5) - 2$ + |:K,x(8) + TI(S)[TZ(S)—FT:L/(S)]] )
L2 2Q v
gt )+ )
using:
ix _QHL i,__@HJ_
ds” =~ ox'| dsXJ‘ T 9xy

Bl
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Perform a canonical transform to new variables X,Y, X',Y' using the generating
function

! 4 z / ]' ! y ! 1 /

Then we have from Canonical Transform theory (see: Goldstein, Classical
Mechanics, 2™ Edition, 1980)

3F2 xT 8F2 1
X — - ! = = — X/ !
0X'  w, . oz Wy (X' + zus)
6F2 Yy 8F2 1
Y == — / —_—— = — Y/ /
Y w, ) By wy (Y'+ ywy)
which give
Transform Inverse Transform
X =z/w, X =wyz'—zw) r=wX 2 =X'jw, +w, X
Y =y/wy, Y =wyy —yw, y =w,Y y =Y Jwy +w)Y

B2
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The structure of the canonical transform results in transformed equations of
motion in proper canonical form:

~ OF. . .
HL:HL'FB—; 0 =H (X,Y,X,Y's)

- 1 1 1 1

H = _X/2 _YIQ _X2 —Y2

2w? * 2w * 2w? + 2w?
. , _

4y 0HL X Ay OH X
ds oxX'  w? ds 0X w2
4y _9H _Y dy,_ 0HL _ Y
ds” 9y’ w? ds~ Y w?

d
* Caution: X' merely denotes the conjugate variable to X : —X # X'
+ X and X' both have dimensions sqrt(meters) §

+ Equations of motion can be verified directly from transform equations (see
problem sets)

+ Transformed Hamiltonian H | is explicitly s dependent due to w_x and w_y
lattice functions
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Following Davidson (Physics of Nonneutral Plasmas), the equations of motion

d_, 1 d,, X
- Y — X' =_
X'+ %X 0 75 w2

1 d Y
dyry Ly g —Y'=-—
ds 2 ds wy

have a psudo-harmonic oscillator solution

X (s) = X;cosz(s) + X/ sin ) (s)

5 ds X; = const
wls) = [ o

5= , set by initial conditions
S wi(3) X! = const

This explicitly verifies the simple, symmetrical form of the Courant-Snyder
invariants in the transformed variables:

2
X2+ X7 = <i> + (wpz' — zwl,)” = const
Wy

2
Y24+Y"? = <i> + (wyy' — yw;)2 = const

Wy

B4
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The canonical transforms render the KV distribution much simpler to express.
First examine how phase-space areas transform:

dxdy = wawydXdY
dx'dy’ -
We Wy

drdydx'dy’ = dXdYdX'dY’
dx'dy’ =

+ The property dx dy dx' dy' = dX dY dX' dY' is a consequence of canonical
transforms preserving phase-space area

Because phase space area is conserved, the distribution in transformed phase-

space variables is identical to the original distribution. Therefore, for the KV
distribution

A z\? rex’ —rla\? 2 ryy — 1y \ 2
qmeExEy Tz Ex Ty Ey

by X2 +X/2 Y2 +Y12
0 { + - 1} Te = \/ExWs

2
qT2ELEy

o Ey

+ Transformed form simpler and more symmetrical

+ Exploited to simplify calculation of distribution moments and projections B5
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Density Calculation:

As a first example application of the canonical transform, prove that the density
projection of the KV distribution is a uniform density ellipse. Doing so will prove
the consistency of the KV equilibrium:

+ If density projection is as assumed then the Courant-Snyder invariants are valid
+ Steps used can be applied to calculate other moments/projections
+ Steps can be applied to continuous focusing without using the transformations

dX'dy’
n(z,y) = / da'dy fo = / dXTdY?
WeWy
Ty = \/ExWg

U:=X'Vea gy qu, = 44
Ty = \/EyWy

U, =Y\ VEaEy

2 2
n:L/dedea[UngUj—<1-X—_Y—)}

2
qmTLTy Ex €y

B6
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Exploit the cylindrical symmetry
du?
Ul =U;+U; dU,dU, = dpU, dU, = dip—=

2

A 4 *du? 5 x2 9P
n(x,y) = P /_Trd%/) /0 < 5 |:UL - (1 )

giving Y
o) 2 2
s [ansfn-(-5-5)
qmreTy Jo rs T

A s ieo2,2 2.2
Ty = if 22 /rs +y /Ty <1

0, if 22 /r2 +y?/r2 > 1

n(l'ay) =

Shows that the singular KV distribution yields the required uniform density

elliptical projection required for self-consistency! ¥

Elliptical oo -
. . Beam ro
Note: Line Charge: A = const >
A e

Area Ellipse = 7rzry B7
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"/:I/:

qrryTy
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/I Aside

An interesting footnote to this Appendix is that an infinity of canonical
generating functions can be applied to transform the KV distribution in
standard quadratic form

fL~0X?+X?+Y?+Y"? — const]

to other sets of variables. These distributions have underlying KV form.
» Not logical to label transformed KV distributions as “new” but this has been
done in the literature
- Could generate an infinity of KV like equilibria in this manner
+ Identifying specific transforms with physical relevance can be useful even if
the canonical structure of the distribution is still KV
- Helps identify basic design criteria with envelope consistency
equations etc.
- Example of this is a self-consistent KV distribution formulated for
quadrupole skew coupling

1/

B8
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S4: Continuous Focusing limit of the KV Equilibrium Distribution

Continuous focusing, axisymmetric beam

Kz(8) = Ky(s) = kéo = const
Eg=€y=¢€

Undepressed betatron wavenumber

Ty =Ty =Ty

KV envelope equation

2 g2
A @ _ = =0
Ty + Ty T
2 £
Ty RyTy — @ _ = =0
Ty + Ty Ty
reduces to:
2
" 2 Q ¢
ry +kgorp —— ——5 =0
T
with matched ( 7, = 0 ) solution
172
Q + \/4kFee? + Q2
rp=——5—— = const
2k§0
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Similarly, the particle equations of motion within the beam are:

2
I,,+{Hm_762}x:0

[re +rylrs
y” + <K, — A Y= 0
Yo e 4 rylry
reduce to
0 Depressed
x| + k%x 1=0 kg = k?ao — —5 = const betatron
Th wavenumber

with solution

/
x1(s) =xu;coslkg(s — si)] + );“ sin[kg(s — s;)]
B
Space-charge tune depression (rate of phase advance same everywhere, LP arb.)
1/2 o
0o < — < 1
ks 2 (1= % - o0
kﬂo go kﬂorb e—0 Q —0
envelope equation

envelope equation
=1, = \/Q/kpo =1, = /¢ /kpo
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Continuous Focusing KV Equilibrium —

Undepressed and depressed particle orbits in the x-plane
g

kg = —kgao R— y=0=y
g0 oo

Particle Orbits in Beam

(s)

X
envelope

L M / undepressed
'\\u// Y::>%;- > g
depressed

Much simpler in details than the periodic focusing case,
but qualitatively similar in that space-charge “depresses” the

rate of particle phase advance
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Continuous Focusing KV Beam — Equilibrium Distribution Form

Using

A= qmri 7 = const  density within the beam
for the beam line charge and
0
d(const - ) = o)
const

the full elliptic beam KV distribution can be expressed as :
+ See next slide for steps involved in the form reduction

2 2 2 2
P 5[(3> +<w) +(g) +(M) 1}
Tz Ex Ty Ey

2
qm2egey

n
= —¢0H, — H
27r5( L 1b)

where 1 qé
H k
D) Xt + pox i+ m'yg’BECQ

= §XL + o X7 -- Hamilt_onian
) b (on-axis ¢ = 0 ref taken)
€
Hyp = o2 — const -- Hamiltonian at beam edge, 7 = Tb
b
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/Il Aside: Steps of derivation

Using: _
fr =&y =¢ \ = gmiry = const
Ty = Ty = Tp = const
A 22 rex’ —rla\? 2 ryy =Ty :
fi= 3 (_) +(zﬁiz) +(£) +<’L]7y) -1
qmiegey Ty Ex Ty €y
_ nrgé (x2 N yz N Tﬁz’z N rggg’z B 1)
e r? g2 €
Using
o(z
d(const - ) = (z)
const

a1 e? . e?
=—94 —x2 - —
fL om (2 L+2§ 1 27,5)

19 06 X

—_ = XL + const
r 8T or ﬂ'eorg

¢:_

4dmeg Tb
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The solution for the potential for the uniform density beam inside the beam is:

79

The Hamiltonian becomeS'
HJ_ = EXJ_ + = k 0X J_ + qd)
2 s myP G2
1 qA 2 qA
+ = k - ——————X + const =
2 x? pox drmyp B L Q=

1 = const

=§X/f + §kgoxi o 2
From the equilibrium envelope equation:
Q ¢
2 + 4
Ty Ty
The Hamiltonian reduces to:
1 2
H
L=x g ra
with edge value (turning point with zero angle):
2
€
H = o 2 + const

Giving (constants are same in Hamiltonian and edge value and subtract out):

—~x2 1 + const

kﬂo =

x 1 + const

2

n 1 e? € n
= (x4 Xt - 5 ) = =5 (H, - H
Jo=or <2’{L+2r;§xL 2% ) = gpd (HL—Hu)

Transverse Equilibrium Distributions
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Equilibrium distribution 22
= HJJ) = )
n 2r

fi(HL) = 2_5(HL—HLIJ) b
Q n = const

= const

because r, =const

From the equilibrium JL(HL) can explicitly calculate (see homework problems)

n, 0<r<m
— d2/ _ I} =~
" / v f1 0, mp<r

Density:

2 2fd233l a”fL

= — f(17r2/72)1 0<r<mn
Temperature: Tz = vemByc e T { x b

0, ry < T

Density Temperature
A n(?“) TI(’I”) 71\ B ,meﬂ502€2
~ T T
n |
! * =To(r =0)
Ty T Ty T
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Continuous Focusing KV Beam — Comments

For continuous focusing, H | is a single particle constant of the motion (see
problem sets), so it is not surprising that the KV equilibrium form reduces to a
delta function form of f, (H,)

+ Because of the delta-function distribution form, all particles in the continuous
focusing KV beam have the same transverse energy with H, = H = const

Several textbook treatments of the KV distribution derive continuous focusing
versions and then just write down (if at all) the periodic focusing version based on
Courant-Snyder invariants. This can create a false impression that the KV
distribution is a Hamiltonian-type invariant in the general form.

+ For non-continuous focusing channels there is no simple relation between
Courant-Snyder type invariants and H
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S5: Stationary Equilibrium Distributions in Continuous Focusing Channels
Take

Kz (s) = Ky(s) = kgo = const

+ Real transport channels have s-varying focusing functions
+ For a rough correspondence to physical lattices take: kgg = 0o/Ly

A class of equilibrium can be constructed for any non-negative choice of function:

1 1
H, = §X/f + 5”‘7%0"3_ +

q¢

my; By c?

fr=fL(HL) >0

¢ must be calculated consistently from the (generally nonlinear) Poisson equation:

0? 0? q 2 1
<@ + a—yz> ¢ = *g/d x) fL(Hy)

+ Solutions generated will be steady-state (9/0ds = 0)
+When fi = fi(H1), the Poisson equation only has axisymmetric solutions with
0/00 = 0 [see: Lund, PRSTAB 10, 064203 (2007)]

The Hamiltonian is only equivalent to the Courant-Snyder invariant in continuous
focusing (see: Transverse Particle Dynamics). In periodic focusing channels
k() and Ky (s) vary in s and the Hamiltonian is not a constant of the motion.
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The axisymmetric Poisson equation simplifies to:

LO (00N an a4 [
7’87"(787")7 € eo/de‘fJ'(HJ‘)

For notational convenience, introduce an effective potential
(add applied component and rescale) defined by:

1 q9
=k2 o+ —a = /22 2
P(r) 2 BoT +m7?5502 r T4ty
then
1
H, = §Xf +

and system axisymmetry can be exploited to calculate the beam density :

n(r) = /d2$ﬁ_ fJ_(HJ_) = 271’/1:0de_ fJ_(HJ_)

Proof: . N .
n(r) =/d2x1 FL(HL) =/ dé’/ di' 7 f1. (if’%w)
-7 JO
1 ~12 * =1 s 1 =12
Hngr + v Hilp—o =10 =27r/0 dr' ¥ fo 57 +v
~, ~, o0
dH, = 7df’ Hlir—o0 — 00 =2r [ dHy fi(Hy)

P
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The Poisson equation can then be expressed in terms of the effective potential as:

10 ( 81/)) o2 2mq?

ror or Bo meoY; ﬁb

/°° dH, fi1(H))
¥(r)

To characterize a choice of equilibrium function f1(H1), the (transformed)
Poisson equation must be solved
+ Equation is, in general, highly nonlinear rendering the procedure difficult
- Linear for 2 special cases: KV (covered) and Waterbag (section to follow)

Some general features of equilibria can still be understood:

+ Apply rms equivalent beam picture and interpret in terms of moments
+ Calculate equilibria for a few types of very different functions to understand the
likely range of characteristics
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Moment properties of continuous focusing equilibrium distributions

Equilibria with any valid equilibrium f1 (Hy) satisfy the

rms equivalent envelope equation for a matched beam:
2
2 Q ¢
kﬁorb - — —3 — O
Tp

+ Describes average radial force balance of particles

+ Uses the result (see J.J. Barnard, Intro. Lectures): {(x0¢/0x) = —A/(87¢€g)
where
qA 2 2 7
:W:COHSt )\:q/dxl/dxlfL(HL)
b~b
drr3 [CdH, fi(H
rp =4(x?) =2(r*). = fooo ffo L fr(H) = const
fO dTwa dHJ_ fJ_(HJ_)
drr [CdH, (Hy —)fL(H
e? =2 (x'F) | = 2r} o Oofd) OJ;( (ko EACID = const
fO dTde) dHL fL(HL)
oy, = JeL e o fiHL)
fd2l‘J_ fdQLL'/l fJ_(HJ_)
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Parameters used to define the equilibrium function

fi(Hy)
should be cast in terms of (or ratios of)
kpo, Q, ¢,

for use in accelerator applications. The rms equivalent beam equations can be
used to carry out needed parameter eliminations. Such eliminations can be
complicated due to the nonlinear structure of the equations.

A local (generally r varying) kinetic temperature can also be calculated

d2x’ oo f
— (2, N = Jd! - fy
Tz - <:C >xL < >xl - fdQ.Tl fL
TL( /d2xlxlfl HJ_ —271’/ dHJ_ HJ_— )f_[_(H_j_)
which is also related to the emittance,
_fdgaunTz 9 o [d?x nT

€2 =16(z%)  (z?) =4r

b [d?zin
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2
(@)1= Jd?zin
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Choices of continuous focusing equilibrium distributions:

Common choices for f, (H, ) analyzed in the literature:

1) KV (already covered)
fJ_ O((S(HJ_*HJ_[,)

HJ_b = const

2) Waterbag (to be covered)
[see M. Reiser, Charged Particle Beams, (1994, 2008)]
| fL o< ©OHL,—Hy) |

0, <0
6(9”):{1,0«15

3) Thermal (to be covered)
[see M. Reiser; Davidson, Noneutral Plasmas, 1990]

fJ_ 0.8 eXp(—HJ_/T)

T = const > 0
Infinity of choices can be made for an infinity of papers!

Hyy
i

H

T

L

Hy

+ Fortunately, range of behavior can be understood with a few reasonable choices
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Preview of what we will find: When relative space-charge is strong, all
smooth equilibrium distributions expected to look similar
Constant charge and focusing: @ = 10~* kfm = const

Vary relative space-charge strength: ¢/0g = 0.1, 0.2, ---, 0.9
Waterbag Distribution Thermal Distribution

Io

Jr
fLx©OHLL,—H)) f1 oxexp(—=Hy/T)
H.y H,
=
I o/og=0.1 =z L0
08
0.8 e /
o
0.6 g 0.6
04 — 04
= 7
0.2 4 Z 02 B
o/ =09 g | ofm09
0. 0.0
0 0005 001 0015 002 0025 003 0 0005 00l 0015 002 0025 003

Radius, kg,r Radius, kgor

Edge shape varies with distribution choice, but cores similar when ¢ / oo small
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S6: Continuous Focusing: The Waterbag Equilibrium Distribution:
[Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008);
and Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009), Appendix D]

Waterbag distribution:

fL(HL) = foO(Hy, — Hy)

@(z):{ 1, >0

fo = const

Hb — const Edge Hamiltonian

0, <0

The physical edge radius 7. of the beam will be related to the edge Hamiltonian:
re 1y = 2(x )1/2

Te >Tp

Using previous formulas the equilibrium density can then be calculated as:

1 q¢
1 = k22 17
Hy = ox? +¢ V=g e

H)|r=r, = Hp Note (generally):

/d2 fL—Qﬂ'/ dHLfL(Hi)_QWf{ 0, v ziffz
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The transformed Poisson equation of the equilibrium

10 < 8¢> ok 2mq?

_— dH H
ror \ or go mCO’Ybﬁbc? w(r) L fL(HL)

can be expressed within the beam (r < 7¢) as:

9
- 87‘ < a_) — kg = 2k3y — kg Hy

k(z) = 27"(] fo

——a 55 = = const
eomy; ﬁb c?

This is a modified Bessel function equation and the solution within the beam
regular at the origin r = 0 and satisfying ¢ (r = r.) = H,, is given by

_ k5o Io(kor)
Y(r) = Hy — 25 k2 [1 - IO(k:OTe):|

where I;(x) is a modified Bessel function of order ¢
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The density is then expressible within the beam (r < 7¢) as:

k3 To(kor)
_ 2P0 | _ Lo\l
n(r) = 4x fo 2 {1 IO(kOTe):|
B 260m7bﬁ§c2k50 {1 3 Io(kor)]
q? Io(k()?“e)

Similarly, the local beam temperature within the beam can be calculated as:

02 _ k%O Io (ko’r)
e i

x n(r)

The proportionality between the temperature 17 (7") and the density n(r) is a
consequence of the waterbag equilibrium distribution choice and is not a general
feature of continuous focusing.
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The waterbag distribution expression can now be expressed as:

'y _ ko Io(kor) T 1
fi(xy,x)) = fo© < k_g |:1 — m} - §XL

+ The edge Hamiltonian value H}, has been eliminated
+ Parameters are:

fo .... distribution normalization
kore .... scaled edge radius
kgo/ko ... scaled focusing strength

Parameters preferred for accelerator applications:
kgo, Q, €z =ey=2¢p

Needed constraints to eliminate parameters in terms of our preferred set will now
be derived.
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Parameters constraints for the waterbag equilibrium beam

First calculate the beam line-charge:

e k3 2 I
A= 27rq/0 dr rn(r) = 47r2qf0ki80r3 1- 1(kore)

kOTc ]0 (kore)

Te k3o o In(Kore)
A=2rm / dr rn(r) = 4x? ﬂﬁ&
7/ () afo 12" To(hore)

here we have employed the modified Bessel function identities ( ¢ integer):
d

%[IEI((I)] = l‘élg_l(l),

20
= 1e@) = Iea(2) = L (2),
Similarly, the beam rms edge radius can be explicitly calculated as:
Ore dr r3n(r)
J “dr rn(r)
2
Io(kore 4 I3(kore
(2) = llar) At o or 2]
Te Ly(kore)  (Kore) Ir(kore)
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2 =2(r?) =2

The perveance is then calculated as:

qA
=———-—-=(k
Q 2meomy; B c? (kgore)

o I2 (kore)
Io(kore)

The edge and perveance equations can then be combined to obtain a parameter
constriant relating k,r, to desired system parameters:

kjors _ I3(kore) 4 [, To(kore)
Q 122(]{07“6) (kore)z IQ(kOre)

Io(kore)Is(kore)
I%(k)ore)

+ (ko?"e)

Here, any of the 3 system parameters on the LHS may be eliminated using the
matched beam envelope equation to effect alternative parameterizations:

2
]g207~b — Q _5% _ 0 —» ecliminate any of: k%o, ry, Q
s ry T}

The rms equivalent beam concept can also be applied to show that:

ko7 1 rms equivalent KV measure of 0/00
Q = 1 —(0/00)? + Space-charge really nonlinear and the
Waterbag equilibrium has a spectrum of o
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The constraint is plotted over the full range of effective space-charge strength:

1 _ Iglkore) 4 {210(7%7"@) + (hor )Io(koTe)Is(kore)]

1- (0‘/0‘0)2 122(.’{507"6) (koT'e)Q Iz(ko’re) 0Te ,[22(.’607‘6)
100
10

£

1
0.1

0.0 0.2 0.4 0.6 0.8 1.0

Tune Depression, o /oy

+ Equilibrium parameter kore uniquely fixes effective space-charge strength
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/l/Aside: Parameter choices and limits of the constraint equation

Some prefer to use an alternative space-charge strength measure to /00
and use a so-called self-field parameter defined in terms of the on-axis plasma
frequency of the distribution:

Self-field parameter:

~2 25
s, = “p =4 o =mn(r=0)
- 3122 ,.21.2 p— me . :
27y, B¢k 0 = on-axis plasma density

For a KV equilibrium, s, and o /o are simply related:

P 2
i (3)
0

For a waterbag equilibrium, S and kg7, (from which o / ¢ can be calculated)
are related by:

1
sp=1— ———
Io(kore)
Generally, for smooth (non-KV) equilibria, Sp turns out to be a logarithmically
insensitive parameter for strong space-charge strength (see tables in S6 and S7) ///
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Use parameter constraints to plot properties of waterbag equilibrium
1) Density and temperature profile at fixed line charge and focusing strength

Q=101 k%o = const

1.0 O'/O'[):O.l

0.8
0.6
0.4
0.2

0.
0 0.005 001 0015 0.02 0.025 003
Radius, kgr
+ Parabolic density for weak space-charge and flat in the core out to a sharp edge
for strong space charge
+ For the waterbag equilibrium, temperature T(r) is proportional to density n(r)
so the same curves apply for T(r)
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2) Phase-space boundary of distribution at fixed line charge and focusing strength
Q=10"" kéo = const

o/op = 0.1

Density
Profile

0 0.005 001 0015 0.02 0.025 0.03
Radius, kg,r

0030
0.025 o/og=10.9
0.020

Edge of
distribution
in phase-space

0.015

Angle, |Z |

0.010
0.005

0.000

0 0005 001 0015 0.02 0025 0.03
Radius, kgr
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3) Summary of scaled parameters for example plots:

Q=10"%
kzorg

k 3
alog| S o kore %‘; EOE 10°% x kgocs

0.9 10.2502 5.263 1.112 1.217|39.81  0.4737

0.8 [0.4666 2.778 1.709 1.208|84.87  0.2222
0.7 10.6477 1.961 2.304 1.197|137.5 0.1373
0.6 [0.7916 1.563 2.979 1.183|201.5 0.09375
0.5 0.8968 1.333 3.821 1.166|283.8 0.06667
0.4 {0.9626 1.190 4.978 1.144|398.7  0.04762
0.3 0.9928 1.099 6.789 1.118(579.3 0.03297
0.2 {0.9997 1.042 10.25 1.085|925.6 0.02083

0.1 {1.0000 1.010 20.38 1.046(1938. 0.01010
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S7: Continuous Focusing: The Thermal Equilibrium Distribution:
[Davidson, Physics of Nonneutral Plasma, Addison Wesley (1990),

Reiser, Theory and Design of Charged Particle Beams, Wiley (1994, 2008),

Review: Lund, Kikuchi, and Davidson, PRSTAB 12, 114801 (2009), Appendix F]

In an infinitely long continuous focusing channel, collisions will eventually relax
the beam to thermal equilibrium. The Fokker-Planck equation predicts that the
unique Maxwell-Boltzmann distribution describing this limit is:

lim f; o« exp (—h)
§—00 T

single particle Hamiltonian of beam

H, rest — .
in rest frame (energy units)

T = const Thermodynamic temperature
(energy units)

Beam propagation time in transport channel is generally short relative to collision time,
inhibiting full relaxation
+ Collective effects may enhance relaxation rate
- Wave spectrums likely large for real beams and enhanced by
transient and nonequilibrium effects
- Random errors acting on system may enhance and lock-in phase mixing
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Continuous focusing thermal equilibrium distribution

Analysis of the rest frame transformation shows that the 2D Maxwell-Boltzmann
distribution (careful on frame for temperature definition!) is:

2.2
myBec? i myByc H
H)=—"7">—exp|——"F7F——
F(HL) ol P < T
Temperature
1 _
H = 5){l + k,@o 2+ 22202 T = const (energy units, lab frame)
. MYy O n(r = 0) = f = const on-axis density
= §x'f + ¢(r =0) =0 (reference choice)

The density can then be conveniently calculated in terms of a scaled stream
function:

n(r) = /de fL = fe=?
o(r myBic’y 1 (m%@?c?k?mr? 4 @)

N=—7F—=7 2 2

and the x- and y-temperatures are equal and spatially uniform with:
32 Jdx! 2 fo
f d2$ﬁ_ f 1

T =vm =T = const
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Scaled Poisson equation for continuous focusing thermal equilibrium

To describe the thermal equilibrium density profile, the Poisson equation must be
solved. In terms of the scaled effective potential, the Poisson equation is:

10 [ 0y ;
Sl pE ) =14 A P
pop \" 9p

y o

dp=0)=0 5 (p=0)=0

P
Here 12 -
\p = ( ) ]f?zﬂilfhf;igll(tzz?;gs p= 7;\ Scaled radial coordinate
2h beam density ’ TbAD  inrel. Debye lengths

Plasma frequency formed
from on-axis beam density

2’yb ﬁECQk 2% By ¢ ko

2
wpm

T 1/2
—>» Jp=|=
Dimensionless parameter relating
-1 the ratio of applied to space-charge

defocusing forces
+ Equation is highly nonlinear, but can be solved (approximately) analytically
+ Scaled solutions depend only on the single dimensionless parameter A
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Numerical solution of scaled thermal equilibrium Poisson equation in
terms of a normalized density

—_
=)

Density, n(p)/n = e )

0.8
0.6
0.4

0.2

0.0
15 20 25

Radius, p =7/(7Ap)

+ Equation is highly nonlinear and must, in general, be solved numerically

- Dependance on A is very sensitive
- For small A, the beam is nearly uniform in the core

+ Edge fall-off is always in a few Debye lengths when A is small
- Edge becomes very sharp at fixed beam line-charge
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/Il Aside: Approximate Analytical Solution for the Thermal Equilibrium
Density/Potential

Using the scaled density
n

N = -

n

= eid)

the equilibrium Poisson equation can be equivalently expressed as:

O°N 1 (ON\* 10N
9p> N \ 9p p Op

N(p=0) =

=N?—(1+A)N

=0

),

This equation has been analyzed to construct limiting form analytical solutions
for both large and small A [see: Startsev and Lund, PoP 15, 043101 (2008)]
+ Large A solution => warmbeam  => Gaussian-like radial profile
*Small A solution => cold beam  => Flat core, bell shaped profile
- Highly nonlinear structure, but approx solution has very high accuracy
out to where the density becomes exponentially small!
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Large A solution:

1+ A
N ~exp [_+T 2]

+ Accurate for A 2 0.1 [For full error spec. see: PoP 15, 043101 (2008)]
Small A solution:

5 (1+ 1A+ £A2)?

{1 5AL(p) + AL}

+ Highly accurate for A < 0.1  [For full error spec. see: PoP 15, 043101 (2008)]

Ip(xz) = 0" order Modified
Bessel Function
of 1* kind

Special numerical methods have also been developed to calculate N or
1 = —1InN to arbitrary accuracy for any value of A, however small
[see: Lund, Kikuchi, and Davidson, PRSTAB, to be published, (2008) Appendices F, G]
+ Extreme flatness of solution for small A < 10~% creates numerical
precision problems that require special numerical methods to address

+ Method was used to verify accuracy of small A solution above
"
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Parameters constraints for the thermal equilibrium beam
Parameters employed in fi (H 1) to specify the equilibrium are (+ kinematic
factors): A, T, A

Parameters preferred for accelerator applications:

kﬁ[]? Q7

Needed constraints can be calculated directly from the equilibrium:

Ex =Ey = €p

T
©= (%mﬁZC?
T

) [
0

T
k2ep =4 ( ) [4 (
po=b ywmBEc? ywmBEc?

)+

B2 ( T ) 1+ A
PO\ ywmpB2e? ) 2(vAp)?
Also useful, pr pn
2 2,2 2
g =16———=(z =4 ——=|r
b 'meﬁfc2< & <’me5§ 02> ’

T

asge) "9
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Integral function
of A only
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Example of derivation steps applied to derive previous constraint equations:

2
_nr 5
b /dpped’

2)\2f0 dppe Y
I dp pe—?

Line charge:

rms edge radius: g _ 4(x2)l =2

rms edge emittance:

= 16—<$2>J_ =

wmBEc?

Matched envelope equation:
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These constraints must, in general, be solved numerically
+ Useful to probe system sensitivities in relevant parameters

Examples:
1) rms equivalent beam tune depression as a function of A

- 1/2
2 _ - Q 1 [fooodp pe V) R.H.S function
=\ "R

B (1+A) fomdpp%ﬂ[; of A only
5.0
2.5 rms equivalent KV measure
00 of O / 0]
<l_> =25 + Space-charge really
g -0 nonlinear and the Thermal
= 73 equilibrium has a spectrum
o
-15.0

0.0 0.2 0.4 0.6 0.8 1.0
Tune Depression, o/og

# Small rms equivalent tune depression corresponds to extremely small values of A
- Special numerical methods generally must be employed to calculate equilibrium

2) Density profile at fixed line charge and focusing strength

Q= 1074 k%o = const
- , :
= 10 o/og=0.1
Nuq 0.8
S5
515 06
£
[a\]
— 04
=
'z 0.2
o
A
0.0

0 0005 001 0.015
Radius, kgor

+ Density profile changes with scaled T
- Low values yields a flat-top => o /op — 0
- High values yield a Gaussian like profile => aglog — 1

0.02 0.025 0.03

SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 109 SM Lund, USPAS, June 2011 Transverse Equilibrium Distributions 110
3) Distribution contours at fixed line charge and focusing strength
_4 K2 — ¢ Scaled parameters for examples 2) and 3)
Q =10 BO — cons Si(HL)/fL(0) Contours, o /oy = 0.5
oJoo = 0.1 a) 0006 | o ) Q=104
0.005
n 0004 = 0'/00 A sy |kgoysAp # 103 x ko
& 0003 —\—\\—\Mn s b
~ ff 0.002 ‘——\“\w \\ 0.9 [1.851 0.3508| 12.33 1.065x10~* 0.4737
0 /o0 =09 0001 | s “N
0.000 A 0.8 |6.382x10~" 0.6104| 6.034 4.444x107° 0.2222
0.005 001 0.015 0.02 0025 003 00 0.2 04 06 08 1.0 1.2 14
Hadius, For %10 Radius, K 0.7 [2.649x1071 0.7906| 3.898 2.402x10~° 0.1373
Radial
Fi(H.)/f.(0) Contours, o/oy = 0.9 F.(H,)/£.(0) Contours, o/ = 0.1 s;ales 0.6 [1.059x10~1 0.9043| 2.78%8 1.406x10~° 0.09375
0.025 0.0012 change .
b) 00010 | 0.5 [3.501x1072 0.9662| 2.077 8.333x107° 0.06667
0.020 \
I L e 0.1 o 00008 0.
Tj 0.013 S Tj 00006 . 0.4 |7.684x1073 0.9924| 1.549 4.762x107° 0.04762
oo 0.010 0.5 B0 .
;\ Y 0.7
S j\\ \ £ oo o D 0.3 [6.950x10=* 0.9993| 1.112 2.473x107° 0.03297
N R _ _
0.000 0 0.005 0.01 0015 0.02 0025 0.03 0.0000 0.0 0.2 0.4 0.6 0.8 1.0 0'2 6389 X 10 6 10000 07217 1042 X 10 6 0'02083
Radius, kgor %1072 Radius. ks B 1n—12 . 1n=T B
+ Particles will move approximately force-free till approaching the edge where it is 0.1 ]4.975x10 1.0000| 0.3553 2.525x107" 0.01010
rapidly bent back (see Debye screening analysis this lecture)
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Comments on continuous focusing thermal equilibria

From these results it is not surprising that the KV envelope model works well for
real beams with strong space-charge (i.e, rms equivalent ¢/co small) since the
edges of a smooth thermal [and other smooth f1(H 1)] distribution become sharp

+ Thermal equilibrium likely overestimates the edge with since T = const, whereas a
real distribution likely becomes colder near the edge

However, the beam edge contains strong nonlinear terms that will cause deviations
from the KV model

# Nonlinear terms can radically change the stability properties (stabilize fictitious
higher order KV modes)
+ Smooth distributions for strong space-charge contain a broad spectrum of particle
oscillation frequencies that are amplitude dependent which is stabilizing
- Landau damping
- Phase mixing
- Less of distribution resonant with perturbations
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Frequency distribution in a thermal equilibrium beam

In 2D thermal equilibrium beam, frequency distribution is 2D. Orbits are closed
in r and theta but not in x and y:

+ Radial bounce frequency

+ Azimuthal frequency
Simplified 1D (sheet beam) model developed to more simply calculate the
frequency distribution in a thermal equilibrium beam to more simply illustrate the
influence of space-charge in 1D

+ Lund, Friedman, and Bazouin, PRSTAB 14, 054201 (2011)

+ Model shown to produce equilibria with same essential structure as higher

dimensional (2D, 3D) models when appropriate “equivalent” parameters used
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Result for space-charge canceling out ~ 1/2 applied focus strength

& ‘Max|[F] ' /50 =05
=N | SR R T A =0.1007
2 Left .
5 Cutoff Width of F:

uto! — —2
<~ = 2 ks
= 3 F oo \ £y ?\/?_’\/79/; kg /kpo ]
£ ; = 0.280
A oL ]
>
5
g 1 o Mean of F:
=} N ol — -

. N kg/kgo = 0.45
g 03141 043411 o/kpo ’
— . : - . .
8.0 0.2 0.4 0.6 0.8 1.0

Oscillation Frequency, ks/kso

Mean: pr = kg/kgo
——— — —92
RMS: O =1/ (kﬂ — kg)Q/kgo = k% - kﬂ /kgo
Width: Fy, = 230 1
Relative Width: Fy,/pr = / d(ks/kgo) - F
1]
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Superimposed results for values of o/ show how the
normalized distribution of oscillator frequencies F in the thermal equilibrium
sheet beglm changes as space charge intensity is varied

) 0, . . ! .
o 25_ o/og =109 _
2 r 1
E 20 3
2 15t ]
A o/o0o=01 0.8 :
Q>)>10:- / 07 ]
g < 02 g3 ... TR E
s St : : ]
g ]
=00 00 0% 06 08 10

Oscillation Frequency, kg/kso

+ Distribution becomes very broad as space-charge intensity becomes stronger!
- KV model (single frequency) very poor
+ Sharp for weak space-charge
- KV model approximately right (single frequency shifted from applied focus)
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Frequency distribution, statistical measures:

30 . . : :
=9
= 25E o/og = 0.9 ]
2
5 20 ]
% 15} ]
A 0/og =01 0.8
= 10 ]
S . 0.7
g st 92 03 ... 0.6 ]
g
=

o
o

02 04 06 08 10
Oscillation Frequency, kg/kso

Statistical Measures
Mean: RMS: 0, = Width: Relative Width:

ofon A pe=Fa/koo K3 —F5'[kso  Fu=2V30r  Fu/pr
0.9 2.879 0.886 0.0176 0.0610 0.0689
0.8 1.093 0.774 0.0354 0.123 0.159
0.7 0.5181 0.663 0.0531 0.184 0.277
0.6 0.2500 0.557 0.0696 0.241 0.433
0.5 0.1097 0.456 0.0833 0.289 0.634
0.4 3.780 x 1072 0.361 0.0915 0.317 0.878
0.3 7.562 x 107% | 0.274 0.0898 0.311 1.14
0.2 3.649 x 1074 0.190 0.0750 0.260 1.37
0.1 5.522 x 1078 0.102 0.0465 0.161 1.58
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Frequency distribution, extreme value measures:

30 . . : .
S8
o 25F olog =09 ]
.2
R :
£ 15} ]
A o/og =01 0.8
= 10 / ]
g ‘ 0.7
3 02 93 ... 0.6
g st . . E
g \
&

00 0207 06 08 10
Oscillation Frequency, kg/kso

Extreme Measures

At Max[F] At Left F' Cutoff
o /oo A F kg/kgo | F ks/kpo
0.9 2.879 273 0.862 27.3 0.862
0.8 1.093 12.1 0.723 12.1 0.723
0.7 0.5181 7.13 0.598 7.09 0.584
0.6 0.2500 5.03 0.515 4.47 0.447
0.5 0.1097 4.12 0.434 2.79 0.314
0.4 3.780 x 1072 3.83  0.352 1.58 0.191
0.3 7.562 x 1072 4.03  0.270 0.698 0.0866
0.2 3.649 x 1074 4.94 0.177 0.153 0.0191
0.1 5.522 x 1078 8.18 0.0912 0.00191 0.000235
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S8: Continuous Focusing: Debye Screening in a Thermal Equilibrium Beam
[Davidson, Physics of Nonneutral Plasmas, Addison Wesley (1990)]

We will show that space-charge and the applied focusing forces of the lattice
conspire together to Debye screen interactions in the core of a beam with high
space-charge intensity
+ Will systematically derive the Debye length employed by
J.J. Barnard in the Introductory Lectures
+ The applied focusing forces are analogous to a stationary neutralizing species in
a plasma

/I Review:
Free-space field of a “bare” test line-charge )\; at the origin » = (
o(r) 10 ([ 0¢ At O(r)
— )\ S (e o N ar
p(r) Yoy rOr <T or 2meg T
solution (use Gauss' theorem) shows long-range interaction
A
o= —27;0 In(r) + const
0 At
E =22 _—
" or  2megr //
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Place a small test line charge at r = 0 in a thermal equilibrium beam:

Lo (T@) :—%/dgﬂﬁl fr(Hy) — e o)

ror \| or 2meg T

Thermal Equilibrium Test Line-Charge

Set:
¢ =¢o+6d0

¢o = Thermal Equilibrium potential with no test line-charge
0¢ = Perturbed potential from test line-charge

Assume thermal equilibrium adapts adiabatically to the test line-charge:

n(r) = /dr"x'l FL(HL) =ne ¥ ~ peWo(r)=ao0/(QT) @ | _ 4
| K
- q0¢ "/ET

~ ’FLe_w“(T‘) (1 — 2—>
% T

Yields: 10 [ 86 ) e 6(r)

SO (pL2) L pedolngy - 2t 2T
ror (r or ) egbeTne % 2meg T

Assume a relatively cold beam so the density is flat near the test line-charge:

e %) ~ fy
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This gives:

e 3(r)

2meg T

L0 () e

ror \'or 772)\% -

«T\! /2
Ap = (=5 -
q*n
Derive a general solution by connecting solution very near the test charge with the
general solution for r nonzero:

Debye radius formed from peak,
on-axis beam density

Near solution: (r — 0)
10 00 At 0
Negligible ---> —— ( —¢> = e 9(r)

2meg T

ror " or

The free-space solution can be immediately applied:

%A

In(r) + const
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General Exterior Solution: (r # 0)

The delta-function term vanishes giving:

19 [ 960 B __r
;a—p(w)*w—o SRS

This is a modified Bessel equation of order 0 with general solution:

Iy(z) = Modified Bessel Func, 1* kind
K, (x ) Modified Bessel Func, 2" kind
Cy, Cs = constants

d¢ = C1l(p) + C2Ko(p)

Connection and General Solution:

Use limiting forms:

Io(p) — 1+ 6(?) Io(p) — ——[1 4 6(1/p)
Ko(p) — —[In(p/2) +0.5772- - -+ O(p?)] \/277:_/)
Kolp) - \/;[1 +6(1/p)]
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Comparison shows that we must choose for connection to the near solution and
regularity at infinity:

Ci1=0
2 2meq

General solution shows Debye screening of test charge in the core of the beam:

At r K Order Zero
69 = 2meg Ko (fyb AD ) o(@) Modified Bessel Function
M ! VAGTRN
o~ e BAD) oy YoAD
2v/Zneo \/r ] (0hD)

+ Screened interaction does not require overall charge neutrality!

- Beam particles redistribute to screen bare interaction

- Beam behaves as a plasma and expect similar collective waves etc.
+ Same result for all smooth thermal equilibrium distributions and in 1D, 2D, and 3D

- Reason why lower dimension models can get the “right” answer for

collective interactions in spite of the Coulomb force varying with dimension

- See table on next slide and Homework problem for 3D (easier than 2D case!)

+ Explains why the radial density profile in the core of space-charge dominated beams
are expected to be flat
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Debye screened potential for a test charge inserted in a thermal
equilibrium beam essentially the same in 1D, 2D, and 3D
Test Charge:
1D:
Sheet Charge Density: Y;
2D:
Line Charge Density:  \;
3D: (physical case)

All Cases:

1/2
eoT
Q>n

Point Charge: at
Dimension Distance Measure Test Charge Density Screened Potential
pP= 0 =~
1D |z 2i0(z) 2ADE: o= al/(0Ap)

S 2 2 i) A T —7/(WwAD)
2D r=+/a2+y At 5 ae NIk VAP > WAp
3D =z +y?+ 22

4 o—r/(wAD)
dmeor

4:0(2)8(y)d(2)

References for Calculation:
1D: Lund, Friedman, Bazouin, PRSTAB 14, 054201 (2011)
2D: These Lectures
3D: Davidson, Theory of Nonneutral Plasmas, Addison-Wesley 1989
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S9: Continuous Focusing: The Density Inversion Theorem

Shows that in an equilibrium distribution the x and x' dependencies are strongly
connected due to the form of fi(H.) and Poisson's equation

For: I 1 n k n qo
= —x x2 —_—
fj_ :fJ_(HJ_) + L pOTL m’YZ:’ﬁgc2
1 1 q¢
= gxlf +(r) Y= §k§oT2 t 3522
calculate the beam density 1
0o = —le
n(r) = [, fo(H :2«/ dU fL(U +(r 2
0 / st =ow [0 @) 2
dlgferentlate N ) af. _ of.
gro [ fL(U+1ZJ)—27r/ dU = U +y)  OHL T OU
. o U _0fs
(U

—27rUhm fLl0+ ) =2xfL(U+¢)|uv=o = =27f1L(¢)

bounded distribution

1 on

— fL(HL):_%%
v=H
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Assume that n(r) is specified, then the Poisson equation can be integrated:

r 67" ( gﬁ) QN(T)

Giving cx -
o(r) = T / dF 7 ()
1
Calculate the effectlve potentlal. Y(r) = —k§0r2 7(1(1;(;2) e
b
_9r=0) 1,5 5  q / dr / (7)
»(r) 352c2 = Qkﬁofr mvbﬁbc%o dr 7 n(r)

For n(r) = const T dF

| 7 e _—
This suggests that y(r) is monotonic in » when d n(r)/dr is monotonic. Apply
the chain rule:

dr 7 n(F) o r?

Density Inversion Theorem

1 0n _ 1 On(r)/or
fL(HL)=~— 21 O VH, 27 9u(r)/or G=H,
1 ¢
V() = gkaor + mvgﬂ;?@

For specified monotonic n(r) the density inversion theorem can be applied with
the Poisson equation to calculate the corresponding equilibrium f, (H )
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Comments on density inversion theorem:

+ Shows that the x and x' dependence of the distribution are inextricably linked for an

equilibrium distribution function f (H )
- Not so surprising -- equilibria are highly constrained

+If df | (H1)/dH, <0 then the kinetic stability theorem (see: S.M. Lund, lectures on
Transverse Kinetic Stability) shows that the equilibrium is also stable

+ The beam density profile n(r) can be measured in the lab using several methods, but
full 4D x,y x')y' phase-space is typically more difficult to measure. Insofar as the
beam is near equilibrium form, the inversion theorem can be applied to infer the full
distribution phase-space from measurement of the beam density profile.
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// Example: Application of the inversion theorem to the KV equilibrium

" { g: Sb§<rr< o= ?)_7: = —r =)
on _ On/or
oy~ av/or property of delta- function'
B 7ﬁ(5(rfrb) o(x —
- o/or Z \df/dm|z s
no(r —rp)
- 731[)/3,“:”, f(zi) =0

x;is root of f

= —nd(Y(r) — ¥(rs))
use:  P(rp) = Hilx =0 =Huyp

1 on _ Expected
Al =5 O |ym, QW(S(HL Hiv) KV form

I

Steps in this example can be used to “derive” the delta-function form required for the
elliptical beam KV distribution in the more general elliptical beam case:

#+ Use canonical transforms (Appendix B) to express elliptical beam in axisymmetric form

+ Apply inversion theorem as outlined above in transformed variables

+ Transform back to regular variables to obtain KV distribution for an elliptical beam
These steps also imply that the KV form is unique
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S10: Comments on the Plausibility of Smooth Vlasov Equilibria
in Periodic Transport Channels

The KV and continuous models are the only (or related to simple transforms
thereof) known exact beam equilibria. Both suffer from idealizations that render
them inappropriate for use as initial distribution functions for detailed modeling
of stability in real accelerator systems:

% KV distribution has an unphysical singular structure giving rise to collective
instabilities with unphysical manifestations
- Low order properties (envelope and some features of low-order plasma
modes) are physical and very useful in machine design
+ Continuous focusing is inadequate to model real accelerator lattices with periodic
or s-varying focusing forces
- Focusing force cannot be realized
(massive partially neutralizing background charge)
- Kicked oscillator intrinsically different than a continuous oscillator

There is much room for improvement in this area, including study if smooth

equilibria exist in periodic focusing and implications if no exact equilibria exist.
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If smooth “equilibrium” beam distributions exist for periodic focusing, then they
are highly nontrivial.

Would a nonexistence of an equilibrium distribution be a problem?

+ Real beams are born off a source that can be simulated
- Propagation length can be relatively small in linacs
+ Transverse confinement can exist without an equilibrium
- Particles can turn at large enough radii forming an edge
- Edge can oscillate from lattice period to lattice period
without pumping to large excursions

— Might not preclude long propagation with preserved
statistical beam quality

Even approximate equilibria would help sort out complicated processes:

+ Reduce transients and fluctuations can help understand processes in simplest form
- Allows more “plasma physics” type analysis and advances
# Beams in Vlasov simulations are often observed to “settle down” to a fairly regular
state after an initial transient evolution
- Extreme phase mixing leads to an effective relaxation
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Recent progress has been made in better understanding whether smooth equilibria
exist in periodic focusing lattices. Results suggest that they are at least classes of
distributions that are very near equilibria:

+ M. Dorf et. al: Carried out systematic simulations adiabatically changing
continuous foucsing to periodic quadrupole at low 0o and find nearly self-
similar periodic beams with small residual oscillations

Dorf, Davidson, Startsev, Qin, Phys. Plasmas 16, 123107 (2009)

+ S. Lund et. al: Guessed a primitive construction taking continuous focusing
distributions and applying KV canonical transforms to better match to periodic
focusing. Procedure implemented in WARP code and shown to produce
excellent results up to near stability limits in 90

Lund, Kikuchi, Davidson, PRSTAB 12, 114801 (2009)

+ E. Startsev et. al: Developed systematic Hamiltonian averaged perturbation
theories showing near equilibrium structure for low oo
Startsev, Davidson, Dorf, PRSTAB 13, 064402 (2010) + Extension papers

+ K. Sonnad et. al: Developed a canonical transform theory including space-
charge which promises increased insight with a high degree of flexability
K. Sonnad and J. Cary, PRE 69, 056501(2004) and an extension to be published

Details beyond the scope of this class. Much remains to be done!
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These notes will be corrected and expanded for reference and future editions of
US Particle Accelerator School and University of California at Berkeley courses:
“Beam Physics with Intense Space Charge”
“Interaction of Intense Charged Particle Beams
with Electric and Magnetic Fields”
by J.J. Barnard and S.M. Lund

Corrections and suggestions for improvements are welcome. Contact:

Steven M. Lund

Lawrence Berkeley National Laboratory
BLDG47R 0112

1 Cyclotron Road

Berkeley, CA 94720-8201

SMLund@]Ibl.gov
(510) 486 — 6936

Please do not remove author credits in any redistributions of class material.
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